If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+y^2-6y-3-6y=14
We move all terms to the left:
y^2+y^2-6y-3-6y-(14)=0
We add all the numbers together, and all the variables
2y^2-12y-17=0
a = 2; b = -12; c = -17;
Δ = b2-4ac
Δ = -122-4·2·(-17)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{70}}{2*2}=\frac{12-2\sqrt{70}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{70}}{2*2}=\frac{12+2\sqrt{70}}{4} $
| a^2=4a+96 | | 4y=(3y+6) | | L=15-1,5t | | 2(y+7)+y=20 | | -1+35a-28=14-8a* | | -4s+13=-5s+4s+1 | | 13+7r=4r+7+2r* | | 5b+8=b-(7-6) | | 1e32+1e32=2e32 | | 8-y=y+16 | | (7x+31)+(7x+31)+(7x+31)+(7x+31)+(7x+31)=360 | | 10=22/4,5*x | | (X+1)^2=x+1 | | |x+1|=x+1 | | -18x+21-2x=4x-27 | | -6=-14-2c | | 7x+1/3x=1.6/(6/11) | | 1y×.2=305 | | 6^(6x-6)=42 | | 6x(4x-9)=0 | | 2y=4y-9 | | x/3+10=3x-14 | | 3/8(2x-8)=1/4x+14 | | n=3/7=4/7 | | 5a+7=a+18 | | 15x=5x-80 | | 7x=-2=6x-34 | | 45-3x=6x+900 | | 8+x=0,5x+20 | | 2x+3/4-5x-4/3=1/2 | | 25=-3x-50 | | 12x=5x-42 |